Retrograde Inhibition of Presynaptic Calcium Influx by Endogenous Cannabinoids at Excitatory Synapses onto Purkinje Cells

نویسندگان

  • Anatol C Kreitzer
  • Wade G Regehr
چکیده

Brief depolarization of cerebellar Purkinje cells was found to inhibit parallel fiber and climbing fiber EPSCs for tens of seconds. This depolarization-induced suppression of excitation (DSE) is accompanied by altered paired-pulse plasticity, suggesting a presynaptic locus. Fluorometric imaging revealed that postsynaptic depolarization also reduces presynaptic calcium influx. The inhibition of both presynaptic calcium influx and EPSCs is eliminated by buffering postsynaptic calcium with BAPTA. The cannabinoid CB1 receptor antagonist AM251 prevents DSE, and the agonist WIN 55,212-2 occludes DSE. These findings suggest that Purkinje cells release endogenous cannabinoids in response to elevated calcium, thereby inhibiting presynaptic calcium entry and suppressing transmitter release. DSE may provide a way for cells to use their firing rate to dynamically regulate synaptic inputs. Together with previous studies, these findings suggest a widespread role for endogenous cannabinoids in retrograde synaptic inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids.

Depolarization-induced suppression of inhibition (DSI) is a form of short-term plasticity of GABAergic synaptic transmission that is found in cerebellar Purkinje cells and hippocampal CA1 pyramidal cells. DSI involves the release of a calcium-dependent retrograde messenger by the somatodendritic compartment of the postsynaptic cell. Both glutamate and endogenous cannabinoids have been proposed ...

متن کامل

Calcium dependence of retrograde inhibition by endocannabinoids at synapses onto Purkinje cells.

Many types of neurons release endocannabinoids from their dendrites in response to elevation of intracellular calcium levels. Endocannabinoids then activate presynaptic cannabinoid receptors, thereby inhibiting neurotransmitter release for tens of seconds. A crucial step in understanding the physiological role of this retrograde signaling is to determine its sensitivity to elevations of postsyn...

متن کامل

Cannabinoids modulate the P-type high-voltage-activated calcium currents in purkinje neurons.

Endocannabinoids released by postsynaptic cells inhibit neurotransmitter release in many central synapses by activating presynaptic cannabinoid CB1 receptors. In particular, in the cerebellum, endocannabinoids inhibit synaptic transmission at granule cell to Purkinje cell synapses by modulating presynaptic calcium influx via N-, P/Q-, and R-type calcium channels. Using whole cell patch-clamp te...

متن کامل

Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels.

At many central synapses, endocannabinoids released by postsynaptic cells inhibit neurotransmitter release by activating presynaptic cannabinoid receptors. The mechanisms underlying this important means of synaptic regulation are not fully understood. It has been shown at several synapses that endocannabinoids inhibit neurotransmitter release by reducing calcium influx into presynaptic terminal...

متن کامل

Inhibition promotes long-term potentiation at cerebellar excitatory synapses

The ability of the cerebellar cortex to learn from experience ensures the accuracy of movements and reflex adaptation, processes which require long-term plasticity at granule cell (GC) to Purkinje neuron (PN) excitatory synapses. PNs also receive GABAergic inhibitory inputs via GCs activation of interneurons; despite the involvement of inhibition in motor learning, its role in long-term plastic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2001